Dynamischer Lautsprecher

Tauchspulenlautsprecher

Dieses Prinzip ist nach wie vor die am weitesten verbreitete Konstruktionsart. Die Bezeichnung rührt daher, dass dabei eine Spule im Feld eines umgebenden Magneten schwingt, also quasi in diesen „eintaucht“. Je nach Einsatzzweck können solche Lautsprecher aber vollkommen unterschiedlich aussehen. Im HiFi-Bereich erstreckt sich die Bandbreite der Wandler von 15″-Tieftönern mit gut 38 Zentimetern Membrandurchmesser bis hin zu 3/4″-Hochtönern mit knapp 2cm Membrandurchmesser.

Technisch gesehen zählen sie zu den dynamischen Lautsprechern, werden also elektrodynamisch angetrieben. Die Bewegung wird von einer mittig angebrachten Spule ausgelöst; sie ist auf einen zylindrischen Träger gewickelt, der wiederum an der Membran befestigt ist. Leitet man ein elektrisches Signal durch die Spule, wird durch die Lorentzkraft (Wechselwirkung mit dem Feld des umgebenden Magneten) eine Kraft auf die Membran ausgeübt, die diese zum Schwingen veranlasst. Spule und Membran bewegen sich im Magnetfeld senkrecht zum Feldverlauf hin und her. Eine Zentrierspinne und die Sicke sorgen für die Rückführung der Membran in ihre Ruhelage sowie für die Zentrierung der Schwingspule.

Membran, Schwingspule, Sicke und Zentrierspinne sind die beweglichen Teile, während Magnet und Lautsprecherkorb fest stehen. Der Korb hält den Magneten und über Spinne und Sicke die Membran und sein Außenrand dient zur Montage des Lautsprechers. Die Sicke wird in der Regel luftdicht ausgeführt und trägt dann auch zur Schallabstrahlung bei. Zentrierspinne und Korb sollen hingegen dem rückwärtigen Luftaustausch möglichst wenig Widerstand entgegensetzen.

Je tiefer der wiederzugebende Ton, desto größer ist das bewegte Luftvolumen. Tieftonlautsprecher verfügen daher meist über große Membranen und weite Auslenkung. Aus Stabilitätsgründen werden große Membranen konusförmige ausgeführt und mittig von der Schwingspule angetrieben. Hochtonlautsprecher müssen rascheren Impulsen folgen können. Kleine Membranen wirken auch der zunehmenden Schallbündelung bei höheren Frequenzen entgegen. Daher haben Hochtöner meist eine kalottenförmigen Membran, bei der die Schwingspule am Außenrand ansetzt.

Da die Membran grundsätzlich als akustischer Dipol arbeitet – den Schall also ebenso nach vorne wie nach hinten abstrahlt – entsteht bei tiefsten Frequenzen ein akustischer Kurzschluss. Um die wechselseitige Auslöschung der front- und rückseitig abgegebenen Schallanteile zu vermeiden, werden Breitband- und Tieftonlautsprecher daher meist in Gehäuse eingebaut. Breitbandige Dipol-Lautsprecher haben große Membranflächen, besondere Anordnungen und gehören zu verzerrungsärmsten Lautsprechern. 

Die möglichst unverfälschte Wiedergabe des Originalsignals drückt sich in einem gehörspezifisch möglichst geradlinigen Frequenzgang aus. Die Komponenten eines Lautsprechers bilden zusammen mit der bewegten Luftmasse ein komplexes Masse-Feder-System. Masse und Steifigkeit der Membran sind dafür ebenso ausschlaggebend wie die Nachgiebigkeit von Sicke und Spinne und die Eigenschaften von Spule und Magnet.

Seit Albert Thiele und Richard Small die nach ihnen benannten Thiele-Small-Parameter festlegten, ist es möglich, die Eigenschaften von Lautsprechern einschließlich des Gehäuses zu simulieren.

Spule und Statormagnet

Dynamische Lautsprecher (das sind zum einen Tauchspulen-Lautsprecher wie auch sogenannte Magnetostaten) nutzen die Lorentzkraft als Kraft zwischen einem Stator-Magneten und einem stromdurchflossenen Leiter (als gewickelte Spule oder als auf die Membran aufgebrachte Leiterbahnen ausgeführt) aus.

Die Lorentzkraft als Antriebskraft beträgt B · i · l

Dabei ist B die magnetische Kraft, i der den Leiter im Magnetfeld durchflossene Strom und l die Länge des Leiters im Magnetfeld. Damit die Lorentzkraft F ~ i ist, muss sich immer die gleiche Spulenlänge im Magnetfeld befinden. Erreicht werden kann dies mittels folgender drei Anordnungen:

Lautsprecher mit Überhangspule

Die Spule ist länger als die Polplattenhöhe. Bis zu einer gewissen Grenzauslenkung wird nur ein Teil der Antriebsspule genutzt. Anwendung bei fast allen Lautsprechern, die erhebliche Auslenkungen durchführen müssen. Der Fluss des Statormagneten wird komplett genutzt, die der Spule nur teilweise, da sich Teile außerhalb deren Magnetfeld befinden. Dies ist die preiswerteste Anordnung und diese wird heute in über 95% aller Lautsprecher eingesetzt.

Lautsprecher mit Unterhangspule

Die Spule ist kürzer als die Polplattenhöhe. Bis zu einer gewissen Grenzauslenkung befindet sich die Antriebsspule immer komplett im Magnetfeld und zwischen den Polplatten des Magneten. Anwendung bei fast allen Lautsprechern, die nur geringe Auslenkungen durchführen müssen. Der Fluss der Spule wird komplett genutzt, die des Statormagneten nur teilweise, da Teile nicht von einer Spule ausgefüllt sind. Um ein homogenes Magnetfeld zu erreichen sind hier aufwändige Polplattengeometrien und wesentlich stärkere Magnete nötig. Teuer, daher fast ausschließlich bei Hochtönern in Anwendung. Diese benötigen aufgrund der geringen bewegten Masse und des kleinen Schwingspulendurchmessers nur Kleinstmagnete.

Hybride Lösung

Bis zur halben Auslenkung der Schwingspulenhöhe befindet sich immer die halbe Schwingspule zwischen den beiden Polplatten. Der Antrieb ist aufwändig, weist aber eine große Symmetrie auf, was ungeradzahlige Harmonische reduziert. So weisen Antriebskraft und Induktivität eine von Antriebsstrom und Auslenkung unabhängigeren Wert auf. Der Antrieb kann durch zwei Zentrierspinnen gehalten werden. Der Fluss des Statormagneten wie der Spule wird je zur Hälfte genutzt. Der Fluss des Statormagneten wird allerdings zweimal genutzt, muss allerdings auch zwei Luftspalte überwinden.

Membran

Die geometrischen Flächen heutiger dynamischer Lautsprechermembranen sind zur Vermeidung von Knickschwingungen in sämtlichen Richtungen gekrümmt (sog. nicht abwickelbare Flächen, auch NAWI Membranen genannt).

Kalottenlautsprecher

Membran und Antriebsspule haben oft den gleichen Durchmesser. Eingesetzt wird dieses Prinzip im Wesentlichen bei Hochtonlautsprechern, manchmal auch bei Mitteltonlautsprechern. Übliche Größen sind 19 mm bis 28 mm für Hochtonlautsprecher, 50 mm bis 76 mm für Mitteltonlautsprecher. Die Kalotte ist meist konvex (erhabener Dome), manchmal aber auch konkav (Inverskalotte) ausgeformt. Arbeitsbereiche beginnen bei 19-mm-Hochtonlautsprechern bei etwa 3 kHz, bei 76-mm-Mitteltonlautsprechern bei 450 Hz (Werte sind Richtwerte).

Konuslautsprecher

Die Membran hat einen wesentlich größeren Durchmesser als die Antriebsspule und ist konkav oder flächig. Eingesetzt wird dieses Prinzip im Wesentlichen bei Tief- und Mitteltonlautsprechern. Übliche Größen beginnen bei 10 cm und enden bei etwa 50cm. Tieftonlautsprecher und Subwoofer haben eher größere Durchmesser, Mitteltonlautsprecher, aber auch Tieftonlautsprecher für kleinere Boxen, sind eher kleiner.

Flachmembran

Eine weitere Möglichkeit sind Flachmembranen. Diese werden entweder vollflächig angetrieben (z. B. bei Flächenlautsprechern) oder man nutzt durch geschickte Konstruktion gedämpfte Biegeschwingungen zur Schallabstrahlung aus.

Mechanischer Aufbau

Beim klassischen Konuslautsprecher sitzt der Magnet am hinteren Ende des sogenannten Korbes oder Chassis, welches die Form einer Schale hat, die von mehreren großen Öffnungen durchbrochen wird, um den Schall ungehindert passieren zu lassen. An der vorderen Öffnung des Korbes ist der Rand der Membran durch eine umlaufende Sicke elastisch aufgehängt. Der Rand ist in der Regel zu einem Flansch verbreitert, an dem der Lautsprecher befestigt werden kann (etwa in einer Lautsprecherbox). Das schmale Ende der konusförmigen Membran trägt die Schwingspule und wird von einer Zentrierspinne geführt, damit die Spule sich berührungsfrei im engen Luftspalt des Magneten bewegt und sich die Gesamtkonstruktion möglichst taumelfrei bewegen kann.

Die Aufhängungs-Steifigkeit der Bewegungsgruppe beeinflusst bei tiefen Frequenzen das klangliche Verhalten des Lautsprechers. Hochwertige Tieftöner werden aus massivem Druckguss gefertigt, um Resonanzen im ungünstigen Bereich zu vermeiden.

Zu breite Stege behindern, ebenso wie fehlende Öffnungen zwischen Zentrierung und Magnet, die Membranbewegung, weil die Luft dort nicht frei zirkulieren kann. Je undurchlässiger die Magnetkapsel und die Zentrierspinne ist, desto mehr werden Schwingungen gebremst.

Die Sicke beeinflusst nicht nur über ihre relative Nachgiebigkeit die Eigenschaften des Lautsprechers (siehe Thiele-Small-Parameter), sondern trägt leider teilweise selbst zur Schallabstrahlung bei. Im Falle von Ringradiatoren (einem Spezialfall der Kalottenhochtöner) etwa wird die Funktion der konzentrischen Membranaufhängung allein von den Sicken übernommen.

Magnetostatischer Lautsprecher

Magnetostatische Lautsprecher sind auch elektrodynamische Lautsprecher. Sie funktionieren nach dem gleichen Grundprinzip der Tauchspulen-Lautsprecher, lediglich Magnet-, Spulen- und Membranform unterscheiden sich. Sie sind nicht mit elektrostatischen Lautsprechern zu verwechseln, die ein anderes Antriebsprinzip nutzen und auch ganz anders angesteuert werden müssen.

Hier wird die Schwingspule nicht auf einem separaten Träger montiert, sondern direkt auf die Membran aufgebracht (Folien-Magnetostaten) oder die Membran dient gleichzeitig als Leiter bzw. als Spule. Beim klassischen „Bändchen“ wirkt das elektrische Signal auf die Membran selbst. Der großflächige Antrieb und das eingesparte Gewicht – die Membran braucht keinerlei Steifigkeit und kann daher hauchdünn ausfallen – sorgen für beste Impulstreue und Detailauflösung. Aufgrund zurückgeworfener Schallanteile aus dem Hörraum oder der einseitig verschlossenen Kapsel stellt das Prinzip “hauchdünne Membran” alles andere als das Ideal dar. 

Der Schall muss sich seinen Weg zwischen den umgebenden Magneten (Magnetstäbe, Statoren) bahnen. Deren Feldstärke limitiert wiederum die Auslenkung der Membran, und mit zunehmender Fläche – wenn sie auch tiefere Frequenzen wiedergeben soll – stellen sich, wie bei allen Membranen, Bündelungseffekte ein.

Magnetostatische Lautsprecher werden heute hauptsächlich im Hoch- und Mitteltonbereich eingesetzt.

Bändchen Lautsprecher

Als Membranmaterial findet hier meist Aluminium Anwendung (etwa 10 µm, vergleichbar der Küchen-Alufolie). Die Folie wird vertikal vom Signal durchflossen und befindet sich im Statorfeld von Permanentmagneten, deren Feldlinien horizontal verlaufen; die resultierende Lorentzkraft bewegt die Membran vor und zurück und führt zur Schallabstrahlung – ähnlich wie bei allen dynamischen Wandlern.

Als technische Hürden erweisen sich dabei jedoch einerseits die extreme Empfindlichkeit des Materials (irreversible Überdehnung bei zu hoher Lautstärke, Durchhörbarkeit von Schallanteilen hinter der Folie) und andererseits die geringe Impedanz: Der minimale Innenwiderstand der Folie würde jeden normalen Verstärker überlasten, weshalb diese Lautsprecher mit einem Übertrager ausgestattet werden müssen. Diese zusätzlichen Bauteile fügen dem Signal Eigenanteile zu.

Bändchen kommen praktisch nur als Hochtöner zum Einsatz. Bändchenhochtonlautsprecher werden heute insbesondere in HiFi-Anlagen des High-End-Segmentes eingesetzt, meist als handgefertigte Hoch- und Mittelton Koaxial-Lautsprecher.

Folien-Magnetostat

Als Membran fungiert hier eine Kunststofffolie, auf die eine Leiterbahn aufgebracht wird, welche ihrerseits die Schwingspule darstellt.

Ein Vorteil gegenüber dem klassischen Bändchen besteht darin, dass sich die Impedanz in verstärkerfreundlichen Regionen bewegt (4–8 Ohm), weshalb solche Lautsprecher ohne Übertrager direkt angeschlossen werden können. Als Membranmaterial stehen diverse zähe – also belastbare – Kunststoffe zur Auswahl. Folienmagnetostaten kann man daher deutlich größer bauen, wodurch sich ihr Einsatzbereich Richtung tieferer Frequenzen erweitert.

Dem Bündelungseffekt großflächiger Membranen wird oft durch einen gebogenen Aufbau des ganzen Lautsprechers begegnet. Für eine ausgedehnte Tieftonwiedergabe werden große Flächen benötigt. Die meisten Magnetostat-Boxen enthalten daher einen zusätzlichen Tauchspulenwandler für die Tieftonreproduktion.

Jet-Hochtöner / Air Motion Transformer

Der von Oskar Heil entwickelte, als Air Motion Transformer bezeichnete Hochton-Lautsprecher besteht aus einem zickzackförmig gefalteten Membranstreifen. Maßgeblich sind nicht die Vor- und Zurück-Bewegung des Streifens, sondern die parallelen Kontraktionen der Schlaufen. Die Luft wird dadurch abwechselnd angesaugt und hinausgepresst. Statt einem durchgehend leitfähigen Folienstreifen kann auch eine nichtleitenden Folie Verwendung finden, auf der die Antriebsspule mäanderförmig aufgebracht ist.

Auf diese Art kann mit vergleichsweise geringer Membranbewegung ein Vielfaches an Schalldruck erzeugt und eine Kennimpedanz von 4 bis 8 Ohm erreicht werden, was bei anderen Magnetostaten erforderliche Übertrager überflüssig macht. Andererseits müssen die Magnetpole breiter als bei anderen Magnetostaten sein, weil die gefaltete Membran mehr Platz braucht. Dadurch werden solche Lautsprecher auch schwerer. Air-Motion-Transformer sind nur als Hochtöner zu haben. Ein gelungener Air Motion Transformer stellt den ultimativen Höchtöner dar.

Elektrostatischer Lautsprecher

Elektrostaten nutzen die Coulomb-Kraft statt der Lorentzkraft als Antrieb. Es wird eine hohe Ansteuerspannung statt eines großen Ansteuerstroms benötigt. Weiterhin muss diese an sich hochnichtlineare Kraft (k² = 100 %) durch Nutzung einer Vorspannung und des Gegentaktprinzips linearisiert werden. Konstruktiv wird diese Form des Antriebs so gut wie immer mit Flächenlautsprechern kombiniert. Verschiedene Formen der Ansteuerung sind möglich.

Was Probleme bezüglich der Auslenkung oder der Schallbündelung bei höheren Frequenzen betrifft, gleichen Elektrostaten ihren magnetostatischen Pendants hier ebenso wie in deren klanglichen Eigenschaften. Allerdings muss ein deutlich höherer technischer Aufwand betrieben werden – und ohne separate Stromversorgung aus der Steckdose funktionieren sie nicht.

Zuvor beschriebene Konstruktionsmerkmale dünner Membranen und deren Problematik treffen auf Elektrostaten im gleichen Maße zu wie auf Magnetostaten.

Ferrostatischer Lautsprecher

Piezo-Lautsprecher nutzen den piezoelektrischen Effekt. Ein Piezokristall ändert seine Dicke proportional zur angelegten Spannung. Sogenannte Piezoelemente arbeiten somit bereits als direkt schallabstrahlende Wandler.

Wegen der schwachen Wiedergabe bei tiefen Frequenzen finden sie sich als alleinige Schallgeber jedoch nur in Kleingeräten als Summer oder zur Sprachwiedergabe. Wo mehr Pegel gefordert ist, wird das Element mit einer Konusmembran versehen, die ihrerseits in ein Horn strahlt.

Im HiFi-Bereich werden Piezolautsprecher weniger eingesetzt. Ausgeprägte Eigenresonanzen der Wandler (meist im Bereich von 1–5 kHz) ermöglichen nur eine verzerrte Wiedergabe.

Anwendungen sind auch die Ultraschall-Erzeugung, zum Beispiel als Marderabwehr oder als Schallwandler in Abstandswarnern.

Elektromagnetischer Lautsprecher

Elektromagnetischer Lautsprecher

Das Konstruktionsprinzip stammt aus der Frühzeit der Audiotechnik. Es wird entweder eine Eisenmembran bewegt, die den Schall direkt abstrahlt, oder ein von einer Spule umschlossener Eisenstab schwingt vor dem Luftspalt eines Dauermagneten und ist mit einer Papiermembran verbunden.

Typisch war die Eisenmembran-Variante in frühen Kopfhörern und Telefonhörern. Die Papierkegel-Membran-Variante war in Radios gebräuchlich.

Wegen ungenügender Wiedergabequalität (eingeschränkter Frequenzbereich, „blecherner“ Klang) werden elektromagnetische Lautsprecher seit den 1930er-Jahren kaum mehr verwendet. Man fand sie in den 1980er-Jahren noch in Kinderspielzeug.

Plasmalautsprecher

Plasmalautsprecher wandeln elektrische Signale ohne Umweg über bewegte Schwingspulen oder Membranen in Schallwellen um, indem ein Plasma oszilliert. Mit einem Luftplasma, dessen Größe und Temperatur im Signaltakt amplitudenmoduliert schwingt, wird die Eigenschaft der Luft genutzt, sich bei Erwärmung auszudehnen und bei Abkühlung wieder zusammenzuziehen.

Plasmalautsprecher arbeiten nahezu verzögerungsfrei und liefern einen Frequenzgang bis weit über den Hörbereich hinaus.

Einschränkungen der kugelförmigen Abstrahlung entstehen durch Bauteile, die das Plasma erzeugen und „im Weg“ stehen.

Die Bildung von Ozon ist ein nachteiliger Nebeneffekt. Plasmalautsprecher spielen weiterhin auch kaum eine Rolle wegen der schlechten elektromagnetischen Verträglichkeit, denn die Entladung wird mit Hochfrequenz angeregt. Plasmalautsprecher sind nur als Hochtöner verwendbar.

Elektrodynamischer Lautsprecher

Field-Coil Lautsprecher oder fremderregter Lautsprecher

Field-Coil Lautsprecher sind auch elektrodynamische Lautsprecher. Sie funktionieren nach dem gleichen Grundprinzip der Tauchspulen-Lautsprecher, lediglich der Magnet unterscheidet sich. Sie sind der Königsweg im Lautsprecherbau und der Elektromagnet muss erregt oder angesteuert werden.

Sonderformen

Horntreiber / Horn-Lautsprecher

Hornlautsprecher können auf einem beliebigen Wandlerprinzip beruhen. Hornlautsprecher strahlen Schall nicht direkt, sondern über einen vorgeschalteten Wellenleiter ab. Dies erhöht den Wirkungsgrad, indem es die akustische Impedanz der Membran besser an die Freiluftimpedanz der Luft anpasst. Hierdurch wird der Schall gerichtet.

Horntreiber können zusätzlich mit einer Druckkammer kombiniert werden, diese stellt eine Verengung der Schallführung vor dem eigentlichen Horn dar. Druckkammern steigern den Wirkungsgrad weiter, erhöhen allerdings den Klirrfaktor.

Horntreiber unterscheiden sich insofern von anderen dynamischen Lautsprechern, als sie für den Betrieb mit einem frontseitig anzubringenden Horn versehen werden. Sie haben daher unter anderem keinen Montagering zur Fixierung in einer Schallwand, sondern einen Anschlussflansch. Ihr Korb besteht aus einer weitgehend geschlossenen Hülle, die sich vor der Membran verjüngt.

Der obligate Hornvorsatz sorgt für eine deutliche Erhöhung des Wirkungsgrades, beeinflusst jedoch auch den Frequenzgang sowie das Abstrahlverhalten.

Im PA-Bereich (Beschallung) werden Schallführungen und Hornvorsätze zum Erhöhen des Wirkungsgrades eingesetzt. Hornlautsprecher gibt es auch im HiFi-Bereich. Paul Klipsch entwarf eine legendäre Schallführung und ist mit seinem Vollbereichs-Horn namens Klipschorn weltweit bekannt geworden.

Biegewellenwandler

Während die Membran bei Konuslautsprechern möglichst steif sein soll, um eine kolbenförmige Bewegung zu gewährleisten, nutzen Biegewellenwandler gerade die Verformbarkeit: Die Wellen breiten sich auf der Membran, konzentrisch vom Ansatz der Schwingspule ausgehend, wie auf einer Wasseroberfläche aus.

Dafür muss zum Beispiel die Sicke – genauer gesagt die Aufhängung der Membran am Außenrand – anders gebaut werden; der Rand schließt mit einem Wellenwiderstand ab, damit Reflexionen vermieden werden. Die Unterdrückung unerwünschter Partialschwingungen ist neben der geringen Schallausbeute eines der größten Probleme solcher Lautsprecher. Andererseits glänzen sie mit homogener Wiedergabe und breitem Abstrahlverhalten.

Der bekannteste Biegewellen-Lautsprecher, entwickelt von Josef Wilhelm Manger, nennt sich Manger-Wandler und ist bis heute über Daniela Manger erhältlich.

Auch Grenzfälle, wie durch sogenannte Exciter zum Schwingen gebrachte Teile einer Zimmerwand (oder Zimmertüre) gehören zu den Biegewellenlautsprechern.

Radialstrahler

Omnidirektionaler Lautsprecher

Um der Schallbündelung entgegenzuwirken, strahlen solche Konstruktionen zumindest horizontal (möglichst) omnidirektional ab. In den meisten Fällen wird das jedoch über Gehäuseelemente realisiert, zum Beispiel mit Hilfe von Dispersionskegeln, die man vor konventionelle Wandler montiert. Von sich aus omnidirektionale Lautsprecher sind sehr selten.

Bislang kommen nur Plasmalautsprecher (siehe unten) dem theoretischen Ideal einer kugelförmigen Abstrahlung nahe. Eine immerhin kreisförmige Abstrahlung bieten andere spezielle Lautsprecher, etwa von German Physiks oder MBL. Erstere nutzen die „Rückseite“ einer langgestreckten Konusmembran, die nach dem Biegewellenprinzip arbeitet; bei Letzteren wird ein Lamellenring im Takt des Signals gestaucht.

Ihr Vorteil bei der HiFi-Wiedergabe liegt im gleichmäßigen Abstrahlverhalten, das den Hörer nicht auf einen Punkt im Stereodreieck festlegt. Andererseits werden raumakustische Effekte verstärkt, was die Abbildungspräzision beeinträchtigt: Die von den Zimmerwänden reflektierten, laufzeitdifferenten Schallanteile überlagern sich mit den bereits in der Aufzeichnung enthaltenen Rauminformationen.

Rundumstrahlende Lautsprecher werden nur zur Wiedergabe des Mittel- und Hochtonbereiches eingesetzt, da in der Praxis auch konventionelle Wandler in Gehäusen niedrigere Frequenzen bereits annähernd kugelförmig abstrahlen.

Sonstige Varianten

Subwoofer stellen für Bass und Tiefbass spezialisierte Lautsprecherboxen dar, die zusammen mit Satellitenboxen erst das vollständige Spektrum wiedergeben.

Exciter stellen als membranlose Schwingungsanreger eine Sonderform des Lautsprechers dar. Sie werden wie normale HiFi-Wandler von entsprechenden Verstärkern angetrieben, benötigen jedoch ein festes Medium als „Membran“ – das heißt, sie müssen erst an einem Objekt fixiert werden, das sie in Schwingung versetzen. In der Praxis können sie zum Beispiel hinter Wandpaneelen montiert werden, wodurch Teile der Zimmerwand dann als „unsichtbare Lautsprecher“ agieren. Solche Kombinationen arbeiten im Prinzip als Biegewellenwandler. Andere Typen werden – zur Ergänzung des Klangbildes, statt eines Subwoofers – an Sitzmöbel geschraubt, wo sie Körperschall erzeugen und so durch tieffrequente Vibrationen das subjektive Bass-Empfinden des Zuhörers verstärken.

Ultraschallwandler werden unter anderem zur Tierabwehr eingesetzt (siehe Piezolautsprecher) oder zu Messzwecken (nach dem Laufzeitprinzip, siehe Echolot und Sonar), ferner zur Reinigung, Materialbearbeitung und in der Medizin (siehe Sonografie). Unter Ausnutzung von subharmonischen Schwingungen kann Ultraschall auch zur Wiedergabe hörbarer Frequenzen Verwendung finden, dieses Prinzip ist jedoch kaum praktikabel.

Sogenannte Parabollautsprecher hingegen sind keine eigenständigen Wandler, sondern nutzen nur die Bündelung durch mechanische Reflektoren. Beispiele dafür sind „Soundduschen“ (im Ausstellungsbereich für lokal begrenzte Audio-Information eingesetzt) oder – im militärischen Kontext – Schallkanonen.

Die Bezeichnung Flachlautsprecher wiederum wird in so vielen unterschiedlichen Zusammenhängen gebraucht, dass sie praktisch nichts aussagt. Es können damit ebenso dynamische Wandler mit gerader statt konusförmiger Membran gemeint sein wie per Exciter betriebene Wandelemente oder Lautsprecher, die statt in Boxen direkt in eine Zimmerwand montiert werden (wodurch ihre Wiedergabecharakteristik annähernd dem Einbau in eine unendliche Schallwand entspricht).

Quelle

Wikipedia, freie Enzyklopädie, https://creativecommons.org/licenses/, Stand 18.12.2021, Ergänzungen Wolf von Langa, Dezember 2021.

Weiter lesen über...

© 2022 Wolf von Langa, All Rights Reserved. Email us.
Wolf von Langa manufactures unique field coil loudspeakers under the Premium brand name WVL.
Made in Germany. WOLFVONLANGA® is a registered trademark, and is used with permission.